Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

THE ROLE OF ANDRODIOECY AND GYNODIOECY IN MEDIATING EVOLUTIONARY TRANSITIONS BETWEEN DIOECY AND HERMAPHRODITISM IN THE ANIMALIA

Identifieur interne : 000218 ( Main/Exploration ); précédent : 000217; suivant : 000219

THE ROLE OF ANDRODIOECY AND GYNODIOECY IN MEDIATING EVOLUTIONARY TRANSITIONS BETWEEN DIOECY AND HERMAPHRODITISM IN THE ANIMALIA

Auteurs : Stephen C. Weeks [États-Unis]

Source :

RBID : ISTEX:7B96805BCDC50AF25F1E0B741058898F335A42E9

English descriptors

Abstract

Dioecy (gonochorism) is dominant within the Animalia, although a recent review suggests hermaphroditism is also common. Evolutionary transitions from dioecy to hermaphroditism (or vice versa) have occurred frequently in animals, but few studies suggest the advantage of such transitions. In particular, few studies assess how hermaphroditism evolves from dioecy or whether androdioecy or gynodioecy should be an “intermediate” stage, as noted in plants. Herein, these transitions are assessed by documenting the numbers of androdioecious and gynodioecious animals and inferring their ancestral reproductive mode. Both systems are rare, but androdioecy was an order of magnitude more common than gynodioecy. Transitions from dioecious ancestors were commonly to androdioecy rather than gynodioecy. Hermaphrodites evolving from sexually dimorphic dioecious ancestors appear to be constrained to those with female‐biased sex allocation; such hermaphrodites replace females to coexist with males. Hermaphrodites evolving from sexually monomorphic dioecious ancestors were not similarly constrained. Species transitioning from hermaphroditic ancestors were more commonly androdioecious than gynodioecious, contrasting with similar transitions in plants. In animals, such transitions were associated with size specialization between the sexes, whereas in plants these transitions were to avoid inbreeding depression. Further research should frame these reproductive transitions in a theoretical context, similar to botanical studies.

Url:
DOI: 10.1111/j.1558-5646.2012.01714.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">THE ROLE OF ANDRODIOECY AND GYNODIOECY IN MEDIATING EVOLUTIONARY TRANSITIONS BETWEEN DIOECY AND HERMAPHRODITISM IN THE ANIMALIA</title>
<author>
<name sortKey="Weeks, Stephen C" sort="Weeks, Stephen C" uniqKey="Weeks S" first="Stephen C." last="Weeks">Stephen C. Weeks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7B96805BCDC50AF25F1E0B741058898F335A42E9</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1558-5646.2012.01714.x</idno>
<idno type="url">https://api.istex.fr/document/7B96805BCDC50AF25F1E0B741058898F335A42E9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C94</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000C94</idno>
<idno type="wicri:Area/Istex/Curation">000C29</idno>
<idno type="wicri:Area/Istex/Checkpoint">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000088</idno>
<idno type="wicri:doubleKey">0014-3820:2012:Weeks S:the:role:of</idno>
<idno type="wicri:Area/Main/Merge">000218</idno>
<idno type="wicri:Area/Main/Curation">000218</idno>
<idno type="wicri:Area/Main/Exploration">000218</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">THE ROLE OF ANDRODIOECY AND GYNODIOECY IN MEDIATING EVOLUTIONARY TRANSITIONS BETWEEN DIOECY AND HERMAPHRODITISM IN THE ANIMALIA</title>
<author>
<name sortKey="Weeks, Stephen C" sort="Weeks, Stephen C" uniqKey="Weeks S" first="Stephen C." last="Weeks">Stephen C. Weeks</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Evolution</title>
<title level="j" type="sub">International Journal of Organic Evolution</title>
<idno type="ISSN">0014-3820</idno>
<idno type="eISSN">1558-5646</idno>
<imprint>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2012-12">2012-12</date>
<biblScope unit="volume">66</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="3670">3670</biblScope>
<biblScope unit="page" to="3686">3686</biblScope>
</imprint>
<idno type="ISSN">0014-3820</idno>
</series>
<idno type="istex">7B96805BCDC50AF25F1E0B741058898F335A42E9</idno>
<idno type="DOI">10.1111/j.1558-5646.2012.01714.x</idno>
<idno type="ArticleID">EVO1714</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0014-3820</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gonochorism</term>
<term>protandrous simultaneous hermaphroditism</term>
<term>reproductive assurance</term>
<term>sexual dimorphism</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ancestor</term>
<term>Androdioecious</term>
<term>Androdioecious animals</term>
<term>Androdioecious species</term>
<term>Androdioecy</term>
<term>Animal species</term>
<term>Balanus</term>
<term>Barnacle</term>
<term>Barnacle evolution</term>
<term>Bauer</term>
<term>Biol</term>
<term>Branchiopoda</term>
<term>Brood chamber</term>
<term>Caenorhabditis</term>
<term>Charlesworth</term>
<term>Charnov</term>
<term>Cirripedia</term>
<term>Clam shrimp</term>
<term>Cnidaria</term>
<term>Cold spring harbor</term>
<term>Cold spring harbor laboratory press</term>
<term>Constraint</term>
<term>Constraint hypothesis</term>
<term>Crustacean</term>
<term>December</term>
<term>Differential gamete production</term>
<term>Dimorphic</term>
<term>Dimorphic dioecious ancestors</term>
<term>Dimorphism</term>
<term>Dioecious</term>
<term>Dioecious ancestor</term>
<term>Dioecious ancestors</term>
<term>Dioecious progenitors</term>
<term>Dioecious species</term>
<term>Dioecy</term>
<term>Ecol</term>
<term>Elegans</term>
<term>Eulimnadia</term>
<term>Evol</term>
<term>Evolution</term>
<term>Evolution december</term>
<term>Evolutionary transitions</term>
<term>Fertilization</term>
<term>Flowering plants</term>
<term>Functional hermaphrodite</term>
<term>Gamete</term>
<term>Gamete production</term>
<term>Genus</term>
<term>Ghiselin</term>
<term>Gonad</term>
<term>Gynodioecious</term>
<term>Gynodioecious animals</term>
<term>Gynodioecious species</term>
<term>Gynodioecy</term>
<term>Hagfish</term>
<term>Hermaphrodite</term>
<term>Hermaphroditic</term>
<term>Hermaphroditic ancestors</term>
<term>Hermaphroditic animals</term>
<term>Hermaphroditic population</term>
<term>Hermaphroditism</term>
<term>High levels</term>
<term>Hoeg</term>
<term>Ibla</term>
<term>Icerya</term>
<term>Icerya purchasi</term>
<term>Kiontke</term>
<term>Larger hermaphrodites</term>
<term>Lysmata</term>
<term>Male function</term>
<term>Male gamete production</term>
<term>Mating systems</term>
<term>Monomorphic</term>
<term>Monomorphic dioecious ancestors</term>
<term>Mutation</term>
<term>Nematode</term>
<term>Nematode caenorhabditis elegans</term>
<term>Ophryotrocha</term>
<term>Oscheius</term>
<term>Outcross</term>
<term>Outcrossing</term>
<term>Overall patterns</term>
<term>Pannell</term>
<term>Petersen</term>
<term>Phylogenetic analyses</term>
<term>Phylogeny</term>
<term>Phylum</term>
<term>Polychaete</term>
<term>Pristionchus</term>
<term>Proc</term>
<term>Progenitor</term>
<term>Reproductive</term>
<term>Reproductive assurance</term>
<term>Reproductive mode</term>
<term>Reproductive transitions</term>
<term>Rivulus marmoratus</term>
<term>Sassaman</term>
<term>Scillaelepas</term>
<term>Selfing</term>
<term>Separate sexes</term>
<term>Sequential</term>
<term>Sequential hermaphrodites</term>
<term>Sequential hermaphroditism</term>
<term>Serranus</term>
<term>Sexual dimorphism</term>
<term>Sexual reproduction</term>
<term>Sexual selection</term>
<term>Shrimp</term>
<term>Simultaneous hermaphrodites</term>
<term>Simultaneous hermaphroditism</term>
<term>Small amount</term>
<term>Sperm</term>
<term>Sperm production</term>
<term>Such transitions</term>
<term>Taxon</term>
<term>Total genera</term>
<term>Trends ecol</term>
<term>Triops</term>
<term>Yusa</term>
<term>Zool</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dioecy (gonochorism) is dominant within the Animalia, although a recent review suggests hermaphroditism is also common. Evolutionary transitions from dioecy to hermaphroditism (or vice versa) have occurred frequently in animals, but few studies suggest the advantage of such transitions. In particular, few studies assess how hermaphroditism evolves from dioecy or whether androdioecy or gynodioecy should be an “intermediate” stage, as noted in plants. Herein, these transitions are assessed by documenting the numbers of androdioecious and gynodioecious animals and inferring their ancestral reproductive mode. Both systems are rare, but androdioecy was an order of magnitude more common than gynodioecy. Transitions from dioecious ancestors were commonly to androdioecy rather than gynodioecy. Hermaphrodites evolving from sexually dimorphic dioecious ancestors appear to be constrained to those with female‐biased sex allocation; such hermaphrodites replace females to coexist with males. Hermaphrodites evolving from sexually monomorphic dioecious ancestors were not similarly constrained. Species transitioning from hermaphroditic ancestors were more commonly androdioecious than gynodioecious, contrasting with similar transitions in plants. In animals, such transitions were associated with size specialization between the sexes, whereas in plants these transitions were to avoid inbreeding depression. Further research should frame these reproductive transitions in a theoretical context, similar to botanical studies.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Weeks, Stephen C" sort="Weeks, Stephen C" uniqKey="Weeks S" first="Stephen C." last="Weeks">Stephen C. Weeks</name>
</region>
<name sortKey="Weeks, Stephen C" sort="Weeks, Stephen C" uniqKey="Weeks S" first="Stephen C." last="Weeks">Stephen C. Weeks</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000218 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000218 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:7B96805BCDC50AF25F1E0B741058898F335A42E9
   |texte=   THE ROLE OF ANDRODIOECY AND GYNODIOECY IN MEDIATING EVOLUTIONARY TRANSITIONS BETWEEN DIOECY AND HERMAPHRODITISM IN THE ANIMALIA
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024